Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 24(S1): S4-S39, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498816

RESUMO

The Astrobiology Primer 3.0 (ABP3.0) is a concise introduction to the field of astrobiology for students and others who are new to the field of astrobiology. It provides an entry into the broader materials in this supplementary issue of Astrobiology and an overview of the investigations and driving hypotheses that make up this interdisciplinary field. The content of this chapter was adapted from the other 10 articles in this supplementary issue and thus represents the contribution of all the authors who worked on these introductory articles. The content of this chapter is not exhaustive and represents the topics that the authors found to be the most important and compelling in a dynamic and changing field.


Assuntos
Exobiologia , Estudantes , Humanos , Exobiologia/educação
2.
Astrobiology ; 24(S1): S40-S56, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498820

RESUMO

The question "What is life?" has existed since the beginning of recorded history. However, the scientific and philosophical contexts of this question have changed and been refined as advancements in technology have revealed both fine details and broad connections in the network of life on Earth. Understanding the framework of the question "What is life?" is central to formulating other questions such as "Where else could life be?" and "How do we search for life elsewhere?" While many of these questions are addressed throughout the Astrobiology Primer 3.0, this chapter gives historical context for defining life, highlights conceptual characteristics shared by all life on Earth as well as key features used to describe it, discusses why it matters for astrobiology, and explores both challenges and opportunities for finding an informative operational definition.


Assuntos
Planeta Terra , Exobiologia , Projetos de Pesquisa
3.
Biol Cell ; 115(3): e2200046, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36571578

RESUMO

BACKGROUND INFORMATION: Autophagy is a conserved process that functions as a cytoprotective mechanism; it may function as a cell death process called programmed cell death type II. There is considerable evidence for the presence of autophagic cell death during oocyte elimination in prepubertal rats. However, the mechanisms involved in this process have not been deciphered. RESULTS: Our observations revealed autophagic cell death in oocytes with increased labeling of the autophagic proteins Beclin 1, light chain 3 A (LC3 A), and lysosomal-associated membrane protein 1 (Lamp1). Furthermore, mTOR and phosphorylated (p)-mTOR (S2448) proteins were significantly decreased in oocytes with increased levels of autophagic proteins, indicating autophagic activation. Moreover, phosphorylated protein kinase B (p-AKT) was not expressed by oocytes, but mitogen-activated protein kinase/extracellular signalregulated kinase (MAPK/ERK) signaling was observed. Additionally, selective and elevated mitochondrial degradation was identified in altered oocytes. CONCLUSIONS: All these results suggest that mTOR downregulation, which promotes autophagy, could be mediated by low energy levels and sustained starvation involving the phosphoinositide 3-kinase (PI3K)/AKT/mTOR and MAPK/ERK pathways. SIGNIFICANCE: In this work, we analyzed the manner in which autophagy is carried out in oocytes undergoing autophagic cell death by studying the behavior of proteins involved in different steps of the autophagic pathway.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Feminino , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Folículo Ovariano/metabolismo , Oócitos/metabolismo , Autofagia
4.
Sci Rep ; 12(1): 936, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042962

RESUMO

Low complexity regions (LCRs) are protein sequences formed by a set of compositionally biased residues. LCRs are extremely abundant in cellular proteins and have also been reported in viruses, where they may partake in evasion of the host immune system. Analyses of 28,231 SARS-CoV-2 whole proteomes and of 261,051 spike protein sequences revealed the presence of four extremely conserved LCRs in the spike protein of several SARS-CoV-2 variants. With the exception of Iota, where it is absent, the Spike LCR-1 is present in the signal peptide of 80.57% of the Delta variant sequences, and in other variants of concern and interest. The Spike LCR-2 is highly prevalent (79.87%) in Iota. Two distinctive LCRs are present in the Delta spike protein. The Delta Spike LCR-3 is present in 99.19% of the analyzed sequences, and the Delta Spike LCR-4 in 98.3% of the same set of proteins. These two LCRs are located in the furin cleavage site and HR1 domain, respectively, and may be considered hallmark traits of the Delta variant. The presence of the medically-important point mutations P681R and D950N in these LCRs, combined with the ubiquity of these regions in the highly contagious Delta variant opens the possibility that they may play a role in its rapid spread.


Assuntos
COVID-19/genética , Mutação de Sentido Incorreto , Proteoma/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Substituição de Aminoácidos , COVID-19/metabolismo , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Sci Rep ; 11(1): 13848, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226571

RESUMO

Metagenomic and traditional paleolimnological approaches are suitable to infer past biological and environmental changes, however, they are often applied independently, especially in tropical regions. We combined both approaches to investigate Holocene Prokaryote and Eukaryote diversity and microbial metabolic pathways in ancient Lake Chalco, Mexico. Here, we report on diversity among a large number of lineages (36,722 OTUs) and functional diversity (27,636,243 non-clustered predicted proteins, and 6,144 annotated protein-family genes). The most abundant domain is Bacteria (81%), followed by Archaea (15%) and Eukarya (3%). We also determined the diversity of protein families and their relationship to metabolic pathways. The early Holocene (> 11,000 cal years BP) lake was characterized by cool, freshwater conditions, which later became warmer and hyposaline (11,000-6,000 cal years BP). We found high abundances of cyanobacteria, and fungi groups associated with mature forests in these sediments. Bacteria and Archaea include mainly anaerobes and extremophiles that are involved in the sulfur, nitrogen, and carbon cycles. We found evidence for early human impacts, including landscape modifications and lake eutrophication, which began ~ 6,000 cal years BP. Subsaline, temperate conditions were inferred for the past 5,000 years. Finally, we found nitrogen-fixing bacteria and protein-family genes that are linked to contaminated environments, as well as several fungal pathogens of crops in near-surface sediments.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Microbiota/genética , Ciclo do Carbono/genética , Sedimentos Geológicos/microbiologia , Humanos , Metagenoma/genética , México , Nitrogênio/metabolismo , Filogenia , Clima Tropical
6.
PLoS One ; 16(3): e0246981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730017

RESUMO

Nidoviruses and arenaviruses are the only known RNA viruses encoding a 3'-5' exonuclease domain (ExoN). The proofreading activity of the ExoN domain has played a key role in the growth of nidoviral genomes, while in arenaviruses this domain partakes in the suppression of the host innate immune signaling. Sequence and structural homology analyses suggest that these proteins have been hijacked from cellular hosts many times. Analysis of the available nidoviral ExoN sequences reveals a high conservation level comparable to that of the viral RNA-dependent RNA polymerases (RdRp), which are the most conserved viral proteins. Two highly preserved zinc fingers are present in all nidoviral exonucleases, while in the arenaviral protein only one zinc finger can be identified. This is in sharp contrast with the reported lack of zinc fingers in cellular ExoNs, and opens the possibility of therapeutic strategies in the struggle against COVID-19.


Assuntos
Exonucleases/genética , Domínios Proteicos/genética , RNA Viral/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Arenavirus/genética , COVID-19/virologia , Humanos , Imunidade Inata/genética , Nidovirales/genética , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2/genética , Dedos de Zinco/genética
7.
Orig Life Evol Biosph ; 48(4): 407-420, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30612264

RESUMO

Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Redes e Vias Metabólicas , Metano/metabolismo , Origem da Vida , Evolução Molecular
8.
J Histochem Cytochem ; 61(9): 680-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23776014

RESUMO

Seminiferous tubules in mammals have histological arrangements defined by the associations between somatic cells and germ cells. The processes of DNA synthesis in meiotic and mitotic cells have different features that are not easily distinguishable through morphological means. In order to characterize the pre-meiotic S phase, 5-bromo-2'-deoxyuridine (BrdU) was injected intraperitoneally into Wistar rats, which were sacrificed 30 min, 2 hr, and 24 hr after injection. We found three different labeling patterns. One of these patterns was characterized by a distribution of the label in the form of speckles, most of which were associated with the nuclear envelope (labeling type I). We suggest that this pattern is due to mitotic DNA synthesis of type B spermatogonia. Labeling type II consisted of labeled foci scattered throughout the nuclear volume, which can be correlated with preleptotenic cells in pre-meiotic DNA synthesis. After 24 hr of incorporation, a third type of labeling, characterized by large speckles, was found to be related to cells in the "bouquet" stage; that is, cells in transition between the leptotene and zygotene phases. Our results indicate that BrdU incorporation induces different labeling patterns in the mitotic and pre-meiotic S phases and thus makes it possible to identify somatic and germinal cells.


Assuntos
Bromodesoxiuridina/análise , Fase S , Espermatogênese , Testículo/citologia , Animais , Bromodesoxiuridina/metabolismo , Proteínas de Ligação a DNA , Imuno-Histoquímica , Masculino , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Ratos , Ratos Wistar , Túbulos Seminíferos/citologia , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/ultraestrutura , Coloração e Rotulagem , Testículo/metabolismo , Testículo/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...